行业动态

让业务增长每一步都可度量

当前位置:首页>新闻中心>行业动态
全部 935 公司动态 486 行业动态 449

缅甸忠告图七星蓝莓:万家app详情下载教程二维码

时间:2025-12-26   访问量:1001

K-Means Clustering Algorithm Implementation in Python

Importing the necessary libraries:

```python

import numpy as np

import pandas as pd

from sklearn.cluster import KMeans

import matplotlib.pyplot as plt

```缅甸忠告图七星蓝莓

Loading the dataset:

```python

data = pd.read_csv('data.csv')

缅甸忠告图七星蓝莓:万家app详情下载教程二维码

```

Preprocessing the data (if required):

Scaling the data if necessary, e.g.:

```python

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

data = scaler.fit_transform(data)

```

Handling missing values, e.g.:

```python

data = data.dropna()

```

Creating the K-Means object:

```python

kmeans = KMeans(n_clusters=3) Replace 3 with the desired number of clusters

```

Fitting the K-Means model to the data:

```python

kmeans.fit(data)

```

Getting the cluster labels:

```python

labels = kmeans.labels_

```

Visualizing the clusters:

```python

plt.scatter(data[:, 0], data[:, 1], c=labels)

plt.show()

```

Evaluating the K-Means model:

Using the Silhouette Coefficient, e.g.:

```python

from sklearn.metrics import silhouette_score

score = silhouette_score(data, labels)

```

Using the Elbow Method, e.g.:

```python

from sklearn.metrics import calinski_harabasz_score

scores = []

for k in range(2, 10): Replace 10 with the maximum number of clusters to consider

kmeans = KMeans(n_clusters=k)

kmeans.fit(data)

scores.append(calinski_harabasz_score(data, kmeans.labels_))

plt.plot(range(2, 10), scores)

plt.show()

```

Additional customization:

Number of clusters: Adjust the `n_clusters` parameter in the `KMeans` object.

Maximum number of iterations: Set the `max_iter` parameter in the `KMeans` object.

Initialization method: Choose the method for initializing the cluster centroids, e.g., 'k-means++'.

Distance metric: Specify the distance metric used for cluster assignment, e.g., 'euclidean'.

Notes:

The Elbow Method is not foolproof and may not always provide the optimal number of clusters.

Visualizing the clusters can help you understand the distribution of data and identify potential outliers.

The Silhouette Coefficient measures the similarity of a point to its own cluster compared to other clusters.

Experiment with different parameter settings to optimize the performance of the K-Means model.

上一篇:约战:精灵再临:美国香草卡购买平台官网

下一篇:香烟如何影响个人关系